College of science, Biology Department .
 Animal physiology, Respiratory Physiology.

Dr. Sanaa Jameel Thamer

- Overall function
- Movement of gases
- Gas exchange
- Transport of gas (oxygen and carbon dioxide).
- PULMONARY VENTILATION:
- BOYLE’S LAW
- Gas pressure in closed container is inversely proportional to volume of container.
- Pressure differences and Air flow.
- Pressures
- Atmospheric pressure -760 mm Hg , 630 mm Hg here
- Intrapleural pressure - 756 mm Hg pressure between pleural layers
- Intrapulmonary pressure - varies, pressure inside lungs

Inspiration/Inhalation

- Diaphragm \& Intercostal muscles
- Increases volume in thoracic cavity as muscles contract
- Volume of lungs increases
- Intrapulmonary pressure decreases (758 mm Hg)

$$
P_{B}=0 \quad P_{B}=0
$$

1. Barometric air pressure $\left(P_{B}\right)$ is equal to alveolar pressure (Palv) and there is no air movement.
2. Increased thoracic volume results in increased alveolar volume and decreased alveolar pressure. Barometric air pressure is greater than alveolar pressure, and air moves into the lungs.

Expiration/Exhalation

- Muscles relax
- Volume of thoracic cavity decreases
- Volume of lungs decreases
- Intrapulmonary pressure increases (763 mm Hg)
- Forced expiration is active

End of inspiration.
4. Decreased thoracic volume results in decreased dveolar volume and increased alveolar pressure. Alveolar pressure is greater than barometric air pressure, and air moves out of the lungs.

- Factors that influence pulmonary air flow
- Diameter of airways, esp. bronchioles
- Sympathetic \& Parasympathetic NS.
- Lung collapse.
- Surface Tension:
- Surface tension tends to oppose alveoli expansion
- Pulmonary surfactant reduces surface tension.
- Lung Volumes \& Capacities
- Tidal Volume (500 mls)
- Respiratory Rate (12 breaths/minute)
- Minute Respiratory Volume ($6000 \mathrm{mls} / \mathrm{min}$).
- Inspiratory Reserve Volume (3000, 2100 mls)
- Inspiratory Capacity (TV + IRV).
- Expiratory Reserve Volume (1200, 800 mls)
- Residual Volume (1200 mls)
- Air left in lungs after exhaling the tidal volume quietly

(b)

Copyright ©2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Alveolar Ventilation Efficiency

- Matching Alveolar air flow with blood flow
- Pulmonary vessels
- Vessels can constrict in areas where oxygen flow is low
- Respiratory passageways
- Airways can dilate where carbon dioxide levels are high.
- Gas Exchange.
- Partial Pressure
- Each gas in atmosphere contributes to the entire atmospheric pressure, denoted as P
- Gases in liquid
- Gas enters liquid and dissolves in proportion to its partial pressure
- O2 and CO2 Exchange by DIFFUSION
- PO2 is 105 mmHg in alveoli and 40 in alveolar capillaries
- PCO2 is 45 in alveolar capillaries and 40 in alveoli

(b)

Copyright ©2001 Benjamin Cummings, an imprint ot Addison Wesley Longman, Inc.

Partial Pressures

- Oxygen is 21% of atmosphere
- $760 \mathrm{mmHg} \times .21=160 \mathrm{mmHg}$ PO2
- This mixes with "old" air already in alveolus to arrive at PO2 of 105 mmHg
- Carbon dioxide is $.04 \%$ of atmosphere

Type II pneumocyte (surfactantsecreting cell) Type I pneumocyte

Alveolar epithelium (wall)

- $760 \mathrm{mmHg} x .0004=.3 \mathrm{~mm} \mathrm{Hg} \mathrm{PCO2}$
- This mixes with high CO2 levels from residual volume in the alveoli to arrive at PCO2 of 40 mmHg
Expired air: $\mathrm{P}_{\mathrm{O}_{2}} 120 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\mathrm{CO}_{2}} 27 \mathrm{~mm} \mathrm{Hg}$

Blood leaving alveolar capilaries:
$\mathrm{P}_{\mathrm{O}_{2}} 104 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\mathrm{CO}_{2}} 40 \mathrm{~mm} \mathrm{Hg}$
$\frac{\square}{\mathrm{O}_{2} \mathrm{CO}_{2}}$
Tissues:
$\mathrm{P}_{\mathrm{O}_{2}}$ less than 40 mm Hg
$\mathrm{P}_{\mathrm{CO}_{2}}$ greater than 45 mm Hg

$$
\mathrm{O}_{2} \mathrm{CO}_{2}
$$

Blood entering tissue capillaries:

Blood leaving tissue capillaries:
$\mathrm{P}_{\mathrm{O}_{2}} \quad 40 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\mathrm{CO}_{2}} 45 \mathrm{~mm} \mathrm{Hg}$

$$
{ }^{-\Gamma} \mathrm{CO}_{2}
$$

Internal respiration

Blood entering alveolar capillaries:
$\mathrm{P}_{\mathrm{O}_{2}} \quad 40 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{PCO}_{2} 45 \mathrm{~mm} \mathrm{Hg}$

Pulmonary arteries
$\mathrm{P}_{\mathrm{CO}_{2}} 40 \mathrm{~mm} \mathrm{Hg}$

Copyright ©2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.
Gapyright © The Mearuw-Hill Comparien. inc. Parminnion requited for reproduation or divelay

Capillary endothelium (wall)

Alveolar fluid (with surfactant) Alveolar epithelium

Basement membrane of alveolar epithelium Interstitial space
Basement membrane of capillary endothelium
Capillary endothelium
Diffusion of O_{2}
Diffusion of CO_{2}
Red blood cell
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or digplay.

$$
\mathrm{PO}_{2}=40 \quad \mathrm{PcO}_{2}=45 \quad \mathrm{PO}_{2}=95 \quad \mathrm{PcO}_{2}=40
$$

$$
\mathrm{PO}_{2}=40 \quad \mathrm{Pco}_{2} \stackrel{\text { Interstitial }}{=} \text { fluid } \mathrm{PO}_{2}=40 \quad \mathrm{Pco}_{2}=45
$$

$$
\mathrm{PO}_{2}=20^{K} \mathrm{PcO}_{2}=46
$$

Respiratory membrane

Gas Transport

- O2 transport in blood

- Hemoglobin - O2 binds to the heme group on hemoglobin, with 4 oxygens/Hb
- PO2
- PO2 is the most important factor determining whether O 2 and Hb combine or dissociate
- O2-Hb Dissociation curve.
- pH
- CO2
- Temperature
- DPG
- CO2 transport
- 7\% in plasma
- 23\% in carbamino compounds (bound to globin part of Hb)
- 70\% as Bicarbonate

(a)

(b)

Carbon Dioxide

- $\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$ <->H2CO3<->H+ $+\mathrm{HCO}_{-}$
- Enzyme is Carbonic Anhydrase
- Chloride shift to compensate for bicarbonate moving in and out of RBC

(b)

Controls of Respiration

- Medullary Rhythmicity Area
- Medullary Inspiratory

Neurons are main control of breathing

- Pons neurons influence inspiration, with
Pneumotaxic area limiting inspiration and Apneustic area prolonging inspiration.
- Lung stretch receptors limit inspiration from being too deep.
- Medullary Rhythmicity Area
- Medullary Expiratory Neurons
- Only active with exercise and forced expiration

Controls of rate and depth of respiration

- Arterial PO2
- When PO2 is VERY low, ventilation increases
- Arterial PCO2
- The most important regulator of ventilation, small increases in PCO2, greatly increases ventilation
- Arterial pH
- As hydrogen ions increase, alveolar ventilation increases, but hydrogen ions cannot diffuse into CSF as well as CO2

